Dynamics are inherent characteristics of batchprocesses, and they may exist not only within a particular batch, but also from batch to batch. To model and monitor such two-dimensional (2D) batch dynamics, two-dimensionaldynamic principal component analysis (2D-DPCA) has been developed. However, the original 2D-DPCA calculates the monitoring control limits based on the multivariateGaussian distribution assumption which may be invalid because of the existence of 2D dynamics. Moreover, the multiphase features of many batchprocesses may lead to more significant non-Gaussianity. In this paper, Gaussian mixture model (GMM) is integrated with 2D-DPCA to address the non-Gaussian issue in 2D dynamicbatchprocessmonitoring. Joint probability density functions (pdf) are estimated to summarize the information contained in 2D-DPCA subspaces. Consequently, for online monitoring, control limits can be calculated based on the joint pdf. A two-phase fed-batch fermentation process for penicillin production is used to verify the effectiveness of the proposed method.
展开▼